
Reachability Preservation Based Parameter
Synthesis for Timed Automata?

Étienne André1, Giuseppe Lipari2, Hoang Gia Nguyen1, Youcheng Sun3

1Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, France
2CRIStAL – UMR 9189, Université de Lille, USR 3380 CNRS, France

3Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. The synthesis of timing parameters consists in deriving con-
ditions on the timing constants of a concurrent system such that it meets
its specification. Parametric timed automata are a powerful formalism
for parameter synthesis, although most problems are undecidable. We
first address here the following reachability preservation problem: given a
reference parameter valuation and a (bad) control state, do there exist
other parameter valuations that reach this control state iff the reference
parameter valuation does? We show that this problem is undecidable, and
introduce a procedure that outputs a possibly underapproximated answer.
We then show that our procedure can efficiently replace the behavioral
cartography to partition a bounded parameter subspace into good and
bad subparts; furthermore, our procedure can even outperform the classi-
cal bad-state driven parameter synthesis semi-algorithm, especially when
distributed on a cluster.

1 Introduction

The design of critical real-time systems is notoriously error-prone, and requires
formal verification to assess the absence of undesired behaviors. The theory of
timed automata (TA) [AD94] provided in the past two decades designers with a
powerful formalism to formally verify real-time systems. TA extend finite-state
automata with clocks that can be compared with integers in guards and invariants.
Unfortunately, the classical definition of TA is not tailored to verify systems only
partially specified, especially when the value of some timing constants is not yet
known. The synthesis of timing parameters consists in deriving conditions on
the timing constants of a concurrent system such that it meets its specification.
Parametric timed automata (PTA) [AHV93] extend TA by allowing the use of
parameters (i.e., unknown constants) in place of integer constants in the model.

? This work was partially supported by a BQR grant “SynPaTiC” and by the ANR
national research program “PACS” (ANR-2014). This manuscript is the author
version of the paper of the same name accepted for publication at the 7th NASA
Formal Methods Symposium (NFM 2015). The final publication is available at
http://www.springer.com.

1

http://www.springer.com

Related Work The expressive power of PTA comes at the cost of the undecidability
of almost all interesting problems. The EF-emptiness problem1 (“does there exist
a parameter valuation such that a control state is reachable?”) is undecidable
if the model contains as little as three parameterized clocks [AHV93]. Research
around PTA since then consisted mainly in either exhibiting subclasses of PTA for
which interesting problems become decidable, or devising efficient semi-algorithms
that would terminate “often enough” to be useful. A famous subclass of PTA
is L/U PTA [HRSV02,BL09] where each parameter can be used only either as
upper bounds or as lower bounds, and for which the EF-emptiness problem
becomes decidable. In [BL09], further problems have been shown to be decidable
for L/U PTA, including the emptiness and the universality problem for infinite
runs properties (“do all parameter valuations have an infinite accepting run?”),
for integer parameter valuations. In [JLR14], however, it was shown that the
solution to the EF-synthesis problem (“find all parameter valuations such that
a control state is reachable”) for L/U PTA cannot be represented as a finite
union of polyhedra, hence strongly limiting the practical interest of L/U PTA.
Orthogonal to syntactical restrictions on the model is the search for restrictions on
the parameter domain: in [JLR14], an algorithm is proposed to synthesize integer
parameter valuations in a bounded domain. This is of course decidable, and the
authors devise two symbolic algorithms that perform better than enumeration.

More practical research on PTA include the development of tools (e.g., Roméo
[LRST09], Imitator [AFKS12]) and their application to several fields such as
hardware verification (e.g., [CEFX09]) and parametric schedulability analysis
(e.g., [CPR08]). In [ACEF09], we proposed the inverse method IM, a procedure
that takes advantage of a reference parameter valuation and generalizes it in the
form of a convex constraint, such that the discrete (linear-time) behavior of the
system is preserved. In [AF10], we proposed the behavioral cartography BC: by
iterating IM on integer points in a bounded parameter domain, we decompose this
domain into constraints such that, for all parameter valuations in each constraint,
the discrete behavior is the same. Then, BC can give a (possibly incomplete)
solution to the EF-synthesis problem, by returning the union of all constraints
for which the desired control state is reachable.

Contribution In this work, our main goal is to address the EF-synthesis prob-
lem. Instead of attacking the state space exploration in a brute force manner
(like [AHV93,JLR14]), we propose to perform several explorations of smaller size,
taking advantage of reference valuations in the line of the inverse method. More
in details, our contributions are as follows:

1. We first address the following reachability preservation problem for PTA: given
a reference parameter valuation π and a control state, do there exist other
parameter valuations that reach this control state iff π does? We show that
this problem is undecidable, and we introduce a procedure PRP (parametric
reachability preservation) that gives a (possibly incomplete) answer.

1 “EF” comes from the CTL syntax and stands for “exists finally”.

2

2. Then, we show that PRP can efficiently replace IM in the behavioral cartogra-
phy to partition a bounded parameter subspace into good and bad subparts,
and give a solution to the EF-synthesis problem.

3. We then compare the PRP-based cartography with the classical parameter syn-
thesis semi-algorithm “EFsynth” [AHV93,JLR14] that solves the EF-synthesis
problem: not only PRP gives a more precise result, but it also performs sur-
prisingly well, despite its repeated analyses. Comparisons are performed using
parametric schedulability problems for real-time systems.

4. We finally briefly discuss a distributed version of PRP, that is faster and
almost always outperforms EFsynth.

Outline Section 2 recalls PTA, decision problems and existing results. Section 3.1
defines the reachability preservation problem and proves its undecidability; Sec-
tion 3.2 introduces PRP and proves its correctness; Section 3.3 shows that PRP
can be used to solve the EF-synthesis problem. Section 4 discusses a distributed
version of PRP, and Section 5 describes an experimental comparison with BC
and EFsynth. Section 6 concludes the paper and gives perspectives.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables that evolve at the same rate. A clock valuation w is a func-
tion w : X → R+. We will often identify a clock valuation π with the point
(w(x1), . . . , w(xH)). We denote by X = 0 the conjunction of equalities that
assigns 0 to all clocks in X. Given d ∈ R+, w+ d denotes the valuation such that
(w + d)(x) = w(x) + d, for all x ∈ X.

Throughout this paper, we assume a set P = {p1, . . . , pM} of parameters, i.e.,
unknown constants. A parameter valuation π is a function π : P → Q+. We will
often identify a valuation π with the point (π(p1), . . . , π(pM)). An integer point
is a valuation π : P → N.

An inequality over X and P is e ≺ 0, where ≺∈ {<,≤,≥, >}, and e is a
linear term

∑
1≤i≤N αizi + d for some N ∈ N, where zi ∈ X ∪ P , αi ∈ Q+,

for 1 ≤ i ≤ N , and d ∈ Q+. A (linear) constraint over X and P is a set of
linear inequalities over X and P . We define in a similar manner inequalities and
constraints over P . A parametric guard is a set of linear inequalities where exactly
one zi is a clock. We denote by L(P) and L(X ∪ P) the set of all constraints
over P , and over X and P respectively. We use K ∈ L(P) and C ∈ L(X ∪ P).

Given a parameter valuation π, C[π] denotes the constraint over X obtained
by replacing each parameter p in C with π(p). Likewise, given a clock valua-
tion w, C[π][w] denotes the expression obtained by replacing each clock x in C[π]
with w(x). We say that π satisfies C, denoted by π |= C, if the set of clock
valuations satisfying C[π] is nonempty. We use the notation <w|π> |= C to
indicate that C[π][w] evaluates to true.

We denote by > (resp. ⊥) the constraint over P that corresponds to the set
of all possible (resp. the empty set of) parameter valuations. We denote by C↓P
the projection of C onto P , i.e., obtained by eliminating the clock variables. We

3

define the time elapsing of C, denoted by C↑, as the constraint over X and P
obtained from C by delaying an arbitrary amount of time. Given R ⊆ X, we
define the reset of C, denoted by [C]R, as the constraint obtained from C by
resetting the clocks in R, and keeping the other clocks unchanged.

Parametric timed automata are an extension of the class of timed automata to
the parametric case, where parameters can be used within guards and invariants
in place of constants [AHV93].

Definition 1. A PTA A is a tuple A = (Σ,L, l0, X, P, I, E), where:

– Σ is a finite set of actions,
– L is a finite set of locations, l0 ∈ L is the initial location,
– X is a set of clocks, P is a set of parameters,
– I is the invariant, assigning to every l ∈ L a parametric guard I(l),
– E is a set of edges (l, g, a,R, l′) where l, l′ ∈ L are the source and destination

locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a parametric
guard.

Throughout this paper, we will be interested in the reachability of bad locations.
We assume a special location lbad ∈ L; without loss of generality, we assume that
this location is unique (the case with several bad locations can be reduced to one
only using additional transitions to lbad).

Given a PTA A = (Σ,L, l0, X, P, I, E), and a parameter valuation π, A[π]
denotes the TA obtained from A by substituting every occurrence of a parameter
pi by the constant π(pi) in the guards and invariants.

We borrow from [JLR14] and adapt to our notations the semantics of a TA.

Definition 2 (Semantics of a TA). Given a PTA A = (Σ,L, l0, X, P, I, E),
and a parameter valuation π, the semantics of A[π] is given by the timed transition
system (Q, q0,⇒), with

– Q = {(l, w) ∈ L× RH
+ | I(l)[π][w] evaluates to true} , q0 = (l0, X = 0)

– ((l, w), a, (l′, w′)) ∈ ⇒ if ∃w′′ : (l, w)
a→ (l′, w′′)

d→ (l′, w′), with

• discrete transitions: (l, w)
a→ (l′, w′), with a ∈ Σ, if (l, w), (l′, w′) ∈ Q,

there exists (l, g, a,R, l′) ∈ E, w′ = [w]R, and g[π][w] evaluates to true.

• delay transitions: (l, w)
d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +

d′) ∈ Q.

A concrete run of a TA is an alternating sequence of states of Q and actions

of the form s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . ,m − 1, ai ∈ Σ,
and (si, ai, si+1) ∈ ⇒. Given a state s = (l, w), we say that s is reachable (or
that A[π] reaches s) if s belongs to a run of A[π]; by extension, we say that l is
reachable in A[π].

We now recall the semantics of PTA.

Definition 3 (Symbolic state). A symbolic state of a PTA A is a pair (l, C)
where l ∈ L is a location, and C ∈ L(X ∪ P) its associated constraint.

4

l1
x ≤ bx = y = 0 l2

x ≥ a
x := 0

y ≥ 20

Fig. 1: An example of a PTA A1 [JLR14]

A state s = (l, C) is π-compatible if π |= C.
The initial state of A is s0 = (l0, (X = 0)↑ ∧ I(l0)).
The computation of the state space relies on the Succ operation. Given a

symbolic state s = (l, C), Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =(
[(C ∧ g)]R

)↑ ∩ I(l′)}. By extension, given a set S of states, Succ(S) = {s′ | ∃s ∈
S s.t. s′ ∈ Succ(s)}.

A symbolic run of a PTA is an alternating sequence of symbolic states and

actions of the form s0
a0⇒ s1

a1⇒ · · · am−1⇒ sm, such that for all i = 0, . . . ,m − 1,
ai ∈ Σ, and si

ai⇒ si+1 is such that si+1 belongs to Succ(si) and is obtained via
action ai.

Given a (concrete or symbolic) run (l0, C0)
a0⇒ (l1, C1)

a1⇒ · · · am−1⇒ (lm, Cm),

its corresponding trace is l0
a0⇒ l1

a1⇒ · · · am−1⇒ lm. The set of all traces of a TA is
called its trace set. Two runs (concrete or symbolic) are said to be equivalent if
their associated traces are equal.

Problems for PTA We recall below two classical problems, as formalized in [JLR14].

Problem 1 (EF-emptiness). Let A be a PTA. Is the set of parameter valuations π
such that A[π] reaches lbad empty?

Problem 2 (EF-synthesis). Let A be a PTA. Compute the set of parameter
valuations π such that A[π] reaches lbad .

Problem 1 is undecidable [AHV93], and the set of parameter valuations
solving Problem 2 cannot be computed in general. In [JLR14], the following
semi-algorithm is proposed, that gives a complete answer to Problem 2 when it
terminates.

EFsynthlbad ((l, C), S) =

C↓P if l = lbad
∅ if (l, C) ∈ S⋃

s′∈Succ((l,C)) EFsynthlbad
(
s′, S ∪ {(l, C)}

)
otherwise

Example 1. Consider the PTA A1 in Fig. 1 [JLR14], with clocks x and y and
parameters a and b. Then EFsynthl2(s0, ∅) does not terminate, and neither does
it if the range of the parameters is bounded from above (e.g., a, b ∈ [0, 50]).

From the proof of correctness of EFsynth in [JLR14], one can infer that the
result of EFsynth is still a (possibly incomplete) answer to Problem 2 even when

5

the algorithm is artificially stopped before its termination. By artificially stopping
EFsynth, we mean bounding the recursion depth: when the depth indeed exceeds
some bound, we replace the recursive call EFsynthlbad (s′, S ∪ {(l, C)}) with ⊥.

Proposition 1. Let K be the result of EFsynthlbad (s0, ∅) when EFsynth is stopped
after being recursively called a bounded number of times. For all π |= K, lbad is
reachable in A[π].

Behavioral Cartography In [ACEF09], we introduced the inverse method IM.
This procedure takes as input a reference parameter valuation π and outputs a
constraint K such that 1) π |= K and 2) for all π′ |= K, the trace sets of A[π]
and A[π′] are the same; hence, the discrete (linear-time) behavior of the system
is preserved. IM performs a breadth-first exploration of the symbolic state space
of A; whenever a π-incompatible state (l, C) is met, it is removed as follows:
a π-incompatible inequality is selected within the projection of C onto P , and
then its negation is added to a constraint maintained by IM. When a fixpoint is
reached, IM returns the intersection of all parametric constraints associated to
the remaining symbolic states.

A variant of IM named IMK outputs a weaker (i.e., larger) constraint, that
only guarantees that any trace of A[π′] is a trace of A[π] [AS11]. It is similar to IM
except that, instead of returning the intersection of all parametric constraints, it
returns only the accumulation of π-incompatible inequalities. Hence, IMK only
forbids the traces not possible under π, without requiring that all traces of A[π]
be possible in A[π′].

In [AF10], we introduced the behavioral cartography BC: by iterating IM on the
integer points in a bounded parameter domain V (usually a product of intervals
in |P | dimensions), one can decompose V into tiles, i.e., parametric constraints
in which the discrete behavior is uniform. Hence all parameter valuations in a
tile satisfy the same set of linear-time properties. Then, given such a property
(expressed using, e.g., LTL), one can partition V into good and bad tiles depending
whether this property is or not satisfied in each tile.

This method has two theoretical drawbacks: first, some calls to IM may not
terminate and, second, BC does not formally guarantee that any “dense” part
of V will be covered beside the integer points. However, in practice not only the
whole dense part of V is almost always covered, but large (infinite) parts of the
parameter space beyond V are often covered.

3 Solving the EF-emptiness Problem Using Reachability
Preservation

3.1 Undecidability of the Preservation of Reachability

Parameter synthesis with respect to a bad location is known to be undecid-
able [AHV93]. Here, we take advantage of a reference parameter valuation π, for
which it is possible to decide whether lbad is reachable [AD94]. The assumption
of a known parameter valuation seems realistic to us: in system design, it is often

6

the case that one knows (from a previous design, of using empirical methods)
a first valuation; however, finding other valuations may be much more difficult,
and may require to restart the design phase from zero. Here, given a reference
parameter valuation, we are interested in the preservation of the reachability of
lbad by other parameter valuations. Given two TA A[π] and A[π′], we say that
A[π′] preserves the reachability of lbad in A[π] when lbad is reachable in A[π]
if and only if lbad is reachable in A[π′]. We call PREACH the problem of the
preservation of reachability. In the following, we show that, given π, deciding
whether at least one parameter valuation π′ 6= π preserves the reachability of lbad
in A[π] is undecidable.

Problem 3 (PREACH-emptiness). Let A be a PTA, and π a parameter valuation.
Does there exist π′ 6= π such that A[π′] preserves the reachability of lbad in A[π]?

Problem 4 (PREACH-synthesis). Let A be a PTA, and π a parameter valua-
tion. Compute the set of parameter valuations π′ such that A[π′] preserves the
reachability of lbad in A[π].

We show below that Problem 3 is undecidable.

Theorem 1. PREACH-emptiness is undecidable.

Proof. Given a parameter valuation reaching some location, we reduce the ex-
istence of a different parameter valuation reaching the same location from the
halting problem of a 2-counter machine.

1. First, recall that [AHV93] defines the encoding of a 2-counter machine (2CM)
using a PTA A2CM that contains two parameters a and b.2 Then [AHV93]
shows that the 2CM halts iff there exists at least one non-null parameter
valuation such that a special location lhalt is reachable in A2CM .

2. Now, let us add a gadget to A2CM that adds a direct transition from the
initial location l0 to lhalt with a guard a = b = 0.3 Let A be this new PTA,
as depicted in Fig. 2. Now, we have:

(a) If the 2CM halts, then lhalt is still reachable in A for some non-null
parameter valuation since it was already reachable in A2CM . Additionally,
due to our gadget, lhalt is also reachable in A for a = b = 0.

(b) If the 2CM does not halt, lhalt is again reachable in A for a = b = 0 due
to our gadget, but no other parameter valuation can reach lhalt , just as
in item 1.

Hence, given π : a = b = 0, there exists a parameter valuation π′ 6= π such
that A[π′] preserves the reachability of lhalt in A[π] iff the 2CM halts.

2 Strictly speaking, their construction uses six parameters, but it is well-known (shown,
e.g., in [JLR14]) that they can be reduced to two.

3 This guard is not allowed in PTA, but can be simulated using an extra clock x and
an urgent location followed by a transition with guard x = a ∧ x = b.

7

l0 lhaltA2CM

a = b = 0

Fig. 2: Undecidability of PREACH-emptiness: PTA A

3.2 Parameter Synthesis Preserving the Reachability

To propose a solution to Problem 4, we introduce here PRP(A, π), that is inspired
by two existing algorithms, viz., EFsynth and the variant IMK of IM [AS11]. PRP
(standing for parametric reachability preservation) is at first close to IMK , and
then switches to an algorithm that resembles EFsynth:

– As long as no bad location is reached, PRP generalizes the trace set of A[π]
by removing π-incompatible states; this is done by negating π-incompatible
inequalities, and returning the intersection of such negated inequalities, in
the line of IMK .

– When at least one bad location is met, PRP switches to an algorithm close
to EFsynth, i.e., it simply gathers the constraints associated with the bad
locations, and returns their union. However, a main difference with EFsynth
is that PRP does not explore π-incompatible states: although this is not
necessary to ensure correctness (in fact, this makes PRP not complete), this
is a key heuristics to keep the state space of reasonable size.

We introduce PRP in Algorithm 1. It is a breadth-first exploration procedure that
maintains the following variables: S (resp. Snew) is the set of states computed
at the previous (resp. current) iterations; Bad is a Boolean flag that remembers
whether a bad location has been met; Kgood is the intersection of the negation
of all π-incompatible inequalities, that will be returned if no bad state is met;
Kbad is the union of the projection onto P of all bad states, that will be returned
otherwise; i remembers the current exploration depth.

The procedure consists in a (potentially infinite) while loop. First, lines 3–7
take care of the π-incompatible states and resembles IMK . These states are
discarded from the exploration, i.e., they are removed from the set of new states
(line 4). Then, if the exploration has not yet met any bad state, Kgood is refined so
as to prevent any such π-incompatible state (l, C) to be reached: a π-incompatible
inequality J is selected within the projection of C onto P , and then its negation
is added to Kgood . This mechanism is borrowed to IM (and its variant IMK).

Second, lines 8–9 take care of the bad states. If any bad state is reached
(line 8), then the Bad flag is set to true, the union of the projection onto P of the
constraints associated with these bad states is added to Kbad , and these states
are discarded, i.e., their successor states will not be computed (line 9).

8

The third part is a classical fixpoint condition: if no new state has been met
at this iteration (line 10), then the result is returned, i.e., either Kbad if some
bad states have been met, or Kgood otherwise. If new states have been met, then
the procedure explores one step further in depth (line 12).

Algorithm 1: PRP(A, π)

input : PTA A of initial state s0, parameter valuation π
output : Constraint over the parameters

1 S ← ∅ ; Snew ← {s0} ; Bad ← false ; Kgood ← > ; Kbad ← ⊥ ; i← 0
2 while true do
3 foreach π-incompatible state (l, C) in Snew do
4 Snew ← Snew \ {(l, C)}
5 if Bad = false then
6 Select a π-incompatible inequality J in C↓P (i.e., s.t. π 6|= J)
7 Kgood ← Kgood ∧ ¬J

8 foreach bad state (lbad , C) in Snew do
9 Bad ← true ; Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(lbad , C)}

10 if Snew ⊆ S then
11 if Bad = true then return Kbad else return Kgood ;

12 S ← S ∪ Snew ; Snew ← Succ(Snew) ; i← i+ 1

We will show in Theorem 2 that PRP outputs a sound (though possibly
incomplete) answer to Problem 4. In fact, PRP verifies a stronger property: if
lbad is reachable in A[π], PRP outputs a constraint K guaranteeing that lbad is
reachable for any parameter valuation satisfying K. However, if lbad is unreachable
in A[π], the constraint K output by PRP satisfies the same property as IMK , i.e.,
the trace set of A[π′] is a subset of the trace set of A[π], for all π′ |= K. This is
formalized in Proposition 2.

Proposition 2. Let A be a PTA, and π a parameter valuation. Suppose PRP(A, π)
terminates with result K. Then, π |= K and, for all π′ |= K:

– if lbad is reachable in A[π], then lbad is reachable in A[π′];

– if lbad is unreachable in A[π], then every trace of A[π′] is a trace of A[π].

Proof. See Appendix A

Theorem 2. Let A be a PTA, and π a parameter valuation. Suppose PRP(A, π)
terminates with result K. Then, π |= K and, for all π′ |= K, lbad is reachable in
A[π] iff lbad is reachable in A[π′].

Proof. From Proposition 2.

9

Remark 1. PRP may not terminate, which is natural since Problem 3 is undecid-
able. Furthermore, even if it terminates, the result output by PRP may be non
complete; in fact, this is designed on purpose (since we stop the exploration of
π-incompatible states) so as to prevent a too large exploration. Enlarging the
output constraint can be done by repeatedly calling PRP on other points than π,
which will be done in Section 3.3.

Example 2. Let us apply PRP to the PTA A1 in Fig. 1. For point π1 : (a =
20, b = 10), PRP outputs constraint 20 > b ∧ a > b ∧ b ≥ 0, which guarantees the
unreachability of lbad . For point π2 : (a = 30, b = 30), PRP outputs constraint
b > 20 ∧ a ≥ 0, which guarantees the reachability of lbad . For point π3 : (a =
0, b = 40), PRP does not terminate.

We now state in Theorem 3 that, even when PRP is interrupted before
its termination, PRP outputs a sound (though possibly incomplete) answer to
Problem 4, provided some bad states have already been met. The result comes
from the fact that the first item of the proof of Proposition 2 holds even if PRP
has not terminated. (Note that the converse case, when Bad = false, does not
hold if PRP has not terminated: although no bad state has been met yet, there
could be some in the future.)

Theorem 3. Let A be a PTA, and π a parameter valuation. Let be K the
value of Kbad at the end of iteration i of PRP(A, π), for some i ≥ 0, such that
Bad = true. Then: 1) lbad is reachable in A[π], and 2) for all π′ |= K, lbad is
reachable in A[π′].

Example 3. Let us again apply PRP to the PTA A1 in Fig. 1. For this PTA and
π3 : (a = 0, b = 40), PRP with a depth limit of 10 terminates with Bad = true.
From Theorem 3, the output constraint is valid, i.e., guarantees the reachability
of lbad .

3.3 EF-Synthesis Using PRP

Given a bounded parameter domain, IM can be iterated on integer points to
perform a behavioral cartography; then, the tiles can be partitioned in good and
bad according to a linear-time property. If the property of interest is simply a
(non-)reachability property, then PRP can be used in place of IM within BC,
giving birth to a procedure PRPC (see Algorithm 2). PRP is called repeatedly
with as an argument the first integer point not yet covered by any constraint
(line 2 in Algorithm 2).

The “cartography” output by PRPC is less precise than the one output by
the classical BC, because the constraints outputs by PRP are not tiles anymore:
Theorem 2 only guarantees the preservation of reachability, and hence different
parameter valuations within a constraint may correspond to different trace sets.
To output a set of parameter valuations solving EF-synthesis, it suffices to return
the union of the constraints for which lbad is reachable.

10

Algorithm 2: PRPC(A, V)

input : PTA A, bounded parameter domain V
output : Set C of constraints over the parameters (initially empty)

1 while there are integer points in V not covered by C do
2 Select an integer point π in V not covered by C
3 C ← C ∪ PRP(A, π)

4 return C

Now, a key feature of PRPC is to explore a relatively small part of the whole
parametric state space at a time, and to still output larger constraints than BC.
We will show in Section 5 that using PRP instead of IM in the cartography indeed
dramatically increases its efficiency.

Remark 2. In the general case, PRPC may not terminate, due to the non-
termination of PRP. However, it is possible to set up a maximum exploration
depth for PRP: when this depth is reached, the algorithm stops. If some bad states
have been met, the resulting constraint can be safely used (from Theorem 3);
otherwise the constraint is just discarded and the reference point on which PRP
was called will never be covered. In this case, termination of PRPC is always
guaranteed, with a partial result (some integer points may still be uncovered).

Let us now compare EFsynth and PRPC, that can both output (possibly
incomplete) solutions to the EF-synthesis problem. On the one hand, EFsynth
should be faster (although we will see in Section 5 that it is not even true
in general), because it performs only one exploration, whereas PRPC has to
launch PRP on many integer points. On the other hand, PRPC will use less
memory, since a smaller part of the state space is explored at a time (due to
the non-exploration of π-incompatible states). Furthermore, its main interest
is that it synthesizes a more valuable result: whereas EFsynth outputs only a
possibly under-approximated set of bad parameter valuations (reaching lbad) and
leaves the whole rest of parameter valuations unknown, PRPC outputs possibly
under-approximated sets of both bad and good parameter valuations, giving
much more valuable information. Finally, just as BC, PRPC can possibly cover
parameter valuations beyond the limits of V , which is not possible for EFsynth.

Example 4. Consider again the PTA A1 in Fig. 1, and let us apply EFsynth
and PRPC with a bounded exploration depth of 10; recall that this is safe from
Proposition 1 and Theorem 3. We apply PRPC to an unconstrained model with
V : a, b ∈ [0, 50]. We apply EFsynth to a model where a and b are constrained
to be in [0, 50]. We give in a graphical manner in Fig. 3a (resp. Fig. 3b) the
results output by PRPC (resp. EFsynth). PRPC synthesizes all the good parameter
valuations (below, in green), i.e., that do not reach l2, and all the bad parameter
valuations (above, in red), i.e., that reach l2, with the exception of a small area
near (0, 0) (in white). All constraints output by PRPC are infinite (which is not
shown in the figure), and hence cover the whole part outside V too. As of EFsynth,

11

the same bad valuations as for PRPC are covered, but only within V , and no
information is given about the good valuations. Hence, since EFsynth was stopped
prematurely, no information can be given for the non-covered part: in particular,
the white part of V cannot be decided, whereas PRPC covers everything except
the small area near (0, 0). This is a major advantage of PRPC over EFsynth in
terms of precision of the result. Also recall that EFsynth covers only (a part of)
V whereas PRPC covers here the whole parameter space beyond V .

(a) PRPC (b) EFsynth

Fig. 3: EF-synthesis using PRPC and EFsynth for A1

4 Towards Distributed Parameter Synthesis

In [ACE14], we proposed two distribution algorithms to execute BC on a set
of computers (e.g., on a cluster), implemented in Imitator using the message
passing interface (MPI). Distributing BC is intrinsically easy: it is trivial that two
executions of IM from two different parameter valuations can be performed on
two different nodes. However, distributing it efficiently is challenging: calling two
executions of IM from two contiguous integer points has a very large probability
to yield the same tile in both cases, and hence to result in a loss of time for one
of the two nodes. Hence, the critical question is how to distribute efficiently the
reference valuations (“points”) on which to call IM. In [ACE14], we proposed a
master-workers scheme, where a master distributes the points to the workers,
using two point distribution algorithms:

1. A sequential point enumeration: each integer point not yet covered by any tile
is sent to a worker, i.e., (0, 0), then (0, 1) and so on (in two dimensions). This
algorithm suffers from the aforementioned problem of close integer points,
but still performs reasonably well (up to 7 times faster using 36 nodes).

2. A random point distribution followed by a sequential enumeration: points
are selected randomly and, when points not yet covered by any tile become
scarce, the master switches to a sequential point enumeration to ensure that
all integer points are covered. The fact that the points not covered by any

12

tile become scarce is detected after the number of unsuccessful attempts to
randomly choose an uncovered point goes beyond a certain threshold (e.g.,
100). This algorithm performs better (up to 12 times faster using 36 nodes).

Here, we will use a third master-workers distribution method, that dynamically
splits the parametric domain V in subparts: when a worker completes the covering
of its subpart, the master splits another subpart into two parts, and assigns one
of the two part to that worker. From our results, this algorithm (implemented
in the working version of Imitator) is more efficient than the two algorithms
of [ACE14].

Remark 3 (Fairness). Of course, comparing a distributed algorithm (PRPC) with
a monolithic one (EFsynth) is unfair. However, to the best of our knowledge, no
distributed algorithm for parameter synthesis has been proposed (except [ACE14]).
One could argue that EFsynth could at least take advantage of multi-cores, e.g.,
using one core to compute the successor states while another performs the (costly)
equality check, or by computing in parallel the successor states of several states –
but PRPC could take advantage of exactly the same enhancements.

5 Experimental Comparison

We compare here several algorithms to solve the EF-synthesis problem using
Imitator [AFKS12]. In its latest version, Imitator implements EFsynth, BC
and PRPC, and can run PRPC in a distributed fashion. Experiments were run
using Imitator 2.6.2 (build 845) on a Linux-based cluster. The nodes of this
cluster feature two 6-core Intel Xeon X5670 running at 2.93 GHz CPUs (therefore,
12 cores in a NUMA fashion). Each node has 24 GiB of memory and runs a 64-bit
Linux 3.2 kernel. The code was compiled using OCaml 3.12.1. The message-
passing library we used is Bull’s OpenMPI variant for Bullx, and the nodes are
interconnected by a 40 Gb/s InfiniBand network.4

5.1 Case Studies

Our first case study is the PTA A1 in Fig. 1, with V : a, b ∈ [0, 50].
Sched1 and Sched2 are two parametric schedulability problems on a single

processor. The goal is to synthesize task parameter valuations guaranteeing that
every task meets its relative deadline. For Sched1, we consider two parameters
D2 and T2 that correspond to the relative deadline and the period of task 2
respectively. We set V to D2, T2 ∈ [20, 100]. For Sched2 (adapted from the
example studied in [BFSV04,JLR14]), we consider two parameters b and z,
which correspond to upper bounds on the execution time of tasks 1 and 3, that
is C1 ∈ [10, b] and C3 ∈ [20, z]. A third parameter (always valuated in our
experiments) is a, that is used in the relative deadline and the period of tasks 1,

4 Sources, binaries, models and results are available at http://www.lipn.fr/~andre/

PRP/.

13

http://www.lipn.fr/~andre/PRP/
http://www.lipn.fr/~andre/PRP/

Case study |H| |V | EFsynth BC PRPC PRPC distr(12)

A1 2 2,601 0.401* TO 0.078* 0.050*

Sched1 13 6,561 TO TO 1595 219

Sched2.50.0 6 3,321 9.25 990 14.55 4.77

Sched2.50.2 6 3,321 662 TO 213 84

Sched2.100.0 6 972,971 21.4 2093 116 10.1

Sched2.100.2 6 972,971 3757 TO 4557 1543

Sched5 21 1,681 352 TO TO 917

SPSMALL 11 3,082 7.49 587 118 11.2

Table 1: Comparison of algorithms to solve the EF-synthesis problem

2, 3. Precisely: D1 = T1 = a, D2 = T2 = 2a and D3 = T3 = 3a. Finally, task
τ2 has a release jitter J2 ∈ {0, 2}. We will study Sched2 with two different V .
First, we valuate a = 50, we set V : b ∈ [10, 50], z ∈ [20, 100] and we synthesize
parameters for both J2 = 0 (“Sched2.50.0”) and J2 = 2 (“Sched2.50.2”). Second,
we valuate a = 100, we set V : b ∈ [10, 1000], z ∈ [20, 1000] and we consider J2 = 0
(“Sched2.100.0”) and J2 = 2 (“Sched2.100.2”). Details are given in Appendix B.

Sched5 models the schedulability of 5 fixed-priority tasks in a single processor.
SPSMALL is a model of an asynchronous memory circuit [CEFX09].

5.2 Summary of the Experiments and Discussion

Table 1 gives from left to right the case study, the number of clocks, the number of
integer points in V and the computation time in seconds for EFsynth, BC, PRPC,
and the distributed version of PRPC using the part-splitting point distribution
running on 12 nodes. “TO” indicates a timeout (> 5000 s).

For A1, none of the algorithms terminate; hence, termination is ensured
by bounding the exploration depth to 10 (marked with * in Table 1). From
Proposition 1 and Theorem 3, the result is still correct; however, this does not
hold for BC. For the other case studies, all algorithms terminate (except in case
of timeouts), and always cover entirely V . To allow a fair comparison, parameters
for EFsynth are bounded in the model as in V ; without these bounds, EFsynth
never terminates for these case studies.

First, we see that PRPC dramatically outperforms BC for all case studies.
This is due to the fact that the constraints output by PRP (that preserve only
non-reachability) are much weaker than those output by IM (that preserve trace
set equality). Second, we see that PRPC compares rather well with EFsynth, and is
faster on three case studies; PRPC furthermore outputs a more valuable constraint
for A1 (see Example 4). PRPC can even verify case studies that EFsynth cannot
(Sched1).

The distributed version of PRPC is faster than PRPC for all case studies.
Most importantly, the distributed PRPC outperforms EFsynth for all but two
case studies. The good timing efficiency of PRPC is somehow surprising, since
it was devised to output a more precise result and to use less memory, but not

14

necessarily to be faster. We believe that PRPC allows to explore small state
spaces at a time and, despite the repeated executions, this is less costly than
handling a large state space (as in EFsynth), especially when performing equality
checks when a new state is computed.

6 Conclusion

In this work, we address the synthesis of timing parameters for reachability
properties. We introduce PRP that outputs an answer to the parameter synthesis
problem of the preservation of the reachability of some bad control state lbad ,
which we showed to be undecidable. By repeatedly iterating PRP on some (integer)
points, one can cover a bounded parameter domain with constraints guaranteeing
either the reachability or the non-reachability of lbad . This approach competes
well in terms of efficiency with the classical bad state synthesis EFsynth, and
gives a more precise result than EFsynth while using less memory. Finally, our
distributed version almost always outperforms EFsynth.

The approach recently proposed to synthesize parameters using IC3 for
reachability properties [CGMT13] looks promising; it would be interesting to
investigate a combination of that work with a PRP-like procedure, especially if
distributed.

So far, we only investigated the preservation of the reachability; investigating
infinite runs properties is of interest too. In this case, it would be interesting to
combine our distributed setting with the multi-core algorithm recently proposed
for (non-parametric) timed automata [LOD+13].

Acknowledgement We thank Camille Coti for a valuable help while using the
Magi cluster, and Didier Lime for useful comments on Section 3.1.

References

ACE14. Étienne André, Camille Coti, and Sami Evangelista. Distributed behavioral
cartography of timed automata. In EuroMPI/ASIA’14, pages 109–114.
ACM, 2014. 12, 13

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. IJFCS, 20(5):819–
836, 2009. 2, 6

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994. 1, 6

AF10. Étienne André and Laurent Fribourg. Behavioral cartography of timed
automata. In RP, volume 6227 of LNCS, pages 76–90. Springer, 2010. 2, 6

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IM-
ITATOR 2.5: A tool for analyzing robustness in scheduling problems. In
FM, volume 7436 of LNCS, pages 33–36. Springer, 2012. 2, 13

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In STOC, pages 592–601. ACM, 1993. 1, 2, 3, 4, 5, 6,
7

15

AS11. Étienne André and Romain Soulat. Synthesis of timing parameters satisfying
safety properties. In RP, volume 6945 of LNCS, pages 31–44. Springer, 2011.
6, 8

BFSV04. Giacomo Bucci, Andrea Fedeli, Luigi Sassoli, and Enrico Vicario. Timed
state space analysis of real-time preemptive systems. Transactions on
Software Engineering, 30(2):97–111, 2004. 13, 19

BL09. Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper
bound parametric timed automata. Formal Methods in System Design,
35(2):121–151, 2009. 2

CEFX09. Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and
Weiwen Xu. Timed verification of the generic architecture of a memory
circuit using parametric timed automata. Formal Methods in System Design,
34(1):59–81, 2009. 2, 14

CGMT13. Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta.
Parameter synthesis with IC3. In FMCAD, pages 165–168. IEEE, 2013. 15

CPR08. Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Symbolic compu-
tation of schedulability regions using parametric timed automata. In RTSS,
pages 80–89. IEEE Computer Society, 2008. 2

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. JLAP, 52-53:183–220,
2002. 2, 17

JLR14. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for timed automata. IEEE Transactions on Software Engineering,
2014. To appear. 2, 3, 4, 5, 7, 13, 19

LOD+13. Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard,
Kim Guldstrand Larsen, and Jaco Van De Pol. Multi-core emptiness check-
ing of timed Büchi automata using inclusion abstraction. In CAV, volume
8044 of LNCS, pages 968–983. Springer, 2013. 15

LRST09. Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez.
Romeo: A parametric model-checker for Petri nets with stopwatches. In
TACAS, volume 5505 of LNCS, pages 54–57. Springer, 2009. 2

16

Appendix

A Proof of Proposition 2

We first recall below two results from [HRSV02], that relate runs in TA and
PTA.

Proposition 3 ([HRSV02, Proposition 3.17]). Let A be a PTA, and π a
parameter valuation. For any symbolic run of A reaching a state (l, C), there
exists an equivalent concrete run in A[π] reaching a state (l, w), with <w|π> |= C.

Proposition 4 ([HRSV02, Proposition 3.18]). Let A be a PTA, and π
a parameter valuation. For any concrete run of A[π] reaching a state (l, w),
there exists an equivalent symbolic run in A reaching a state (l, C) such that
<w|π> |= C.

We can now prove Proposition 2 below.

Proof. Consider the value of Bad at the end of PRP.

– First, suppose Bad = true. From Algorithm 1, some bad states have been
met, and the output is Kbad . Let us first note that π |= Kbad : by construction,
Kbad is made of the disjunction of constraints associated with states of Snew

that are necessarily π-compatible – otherwise they would have been discarded
(lines 3–7).
Now, let π′ |= Kbad . Kbad is made of a disjunction of constraints of the form
Kbad = K1

bad ∨ · · · ∨Kn
bad for some n. Since π′ |= Kbad , there exists at least

one Kj
bad with 1 ≤ j ≤ n such that π′ |= Kj

bad . This constraint Kj
bad has

been added in Algorithm 1 when a run reaching some (lbad , C
j) has been

met (line 9), with Kj
bad = Cj↓P . Since π′ |= Kj

bad , then π′ |= Cj hence there
exists w′ such that <w′|π′> |= Cj . Hence, from Proposition 3, there exists
an equivalent run in A[π′], and lbad is reachable in A[π′].
Using the same reasoning with π together with the fact that π |= Kbad gives
that lbad is also reachable in A[π].

– Conversely, suppose Bad = false. From Algorithm 1, no bad state has been
met, and the output is Kgood .
Let us first note that π |= Kgood : by construction of Kgood , Kgood is made of
the intersection of the negation of π-incompatible inequalities.
Let us now show that every trace of A[π′] is a trace of A[π]. Let π′ |= Kgood ,
and consider a run of A[π′] reaching (l, w′). From Proposition 4, there exists
an equivalent run in A reaching a state (l, C) with <w′|π′> |= C.
1. First, assume π |= C↓P : by definition, there exists w such that <w|π> |=
C. Hence, from Proposition 3, there exists an equivalent run in A[π]
reaching (l, w), which gives the result.

2. Conversely, assume π 6|= C↓P : this situation cannot happen due to the
removal of π-incompatible states in Algorithm 1.

17

Now, we shall show that lbad is unreachable in A[π]. Suppose lbad is reachable
in A[π], i.e., there exists a run of A[π] reaching (lbad , w), for some w. From
Proposition 4, there exists an equivalent run in A reaching a state (lbad , C)
with <w|π> |= C. This cannot happen since C is by definition π-compatible,
and no bad state was met in Algorithm 1.

From the two items above, we have that lbad is reachable in A[π] iff Bad = true.
Hence, if lbad is reachable in A[π], then lbad is reachable in A[π′]; and conversely
if lbad is unreachable in A[π], then every trace of A[π′] is a trace of A[π].

B Additional Details on Case Studies

B.1 Sched1

A real-time task τi is characterized by a tuple (Ci, Di, Ti), where Ci is the
execution, Ti is the period and Di is the relative deadline. Every Ti time units
the task releases a job, which must complete its execution Ci within Di time
units. Since Di could be larger than Ti, a task may release a new job before the
prior job finishes its execution, in which case the latter job is not able to execute
till its precedence completes. Each task is assigned an unique and fixed priority.
By convention, lower task index corresponds to higher priority.

We consider a task set T with three tasks τ1 = (5, 40, 40), τ2 = (20, D2, T2)
and τ3 = (30, 100, 100), where T2, D2 ∈ [20, 100] are parameters. We want to
investigate the parameter space of T2 and D2 that guarantees all tasks meet their
deadlines.

The graphical cartography output by PRP for Sched1 is given in Fig. 4.

Fig. 4: Cartography output by PRPC for Sched1

18

B.2 Sched2

We consider here a scheduling example, adapted from the example studied
in [BFSV04,JLR14]. There are three tasks τ1, τ2 and τ3: D1 = T1 = a and
C1 ∈ [10, b]; D2 = T2 = 2a and C2 ∈ [18, 28]; D3 = T3 = 3a and C3 ∈ [20, z].
Moreover, task τ2 has a release jitter J2 ∈ {0, 2}. Jitter reflects the uncertainty of
task activation. For example, the time interval between two successive job releases
of task τ2 can be any value in [T2, T2 + J2]. When modeling the scheduling, for
each task there is a clock to track the time passed since its latest job release and
to trigger the next task activation. We suppose such clocks are initialized to 0.
In the following experiments, we will consider b and z as parameters.

The graphical cartographies output by PRP for Sched2.50.0 and Sched2.50.2
are given in Fig. 5.

(a) Sched2.50.0 (b) Sched2.50.2

Fig. 5: Cartography output by PRPC for Sched2 with a = 50

19

	Reachability Preservation Based Parameter Synthesis for Timed Automata

